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Abstract. Automated Driving Systems (ADS) represent a key technological 
advancement in the area of Cyber-physical systems (CPS) and Embedded Con-
trol Systems (ECS) with the aim of promoting traffic safety and environmental 
sustainability. The operation of ADS however exhibits several uncertainties that 
if improperly treated in development and operation would lead to safety and 
performance related problems. This paper presents the design of a knowledge-
base (KB) strategy for a systematic treatment of such uncertainties and their 
system-wide implications on design-space and state-space. In the context of this 
approach, we use the term Knowledge-Base (KB) to refer to the model that 
stipulates the fundamental facts of a CPS in regard to the overall system opera-
tional states, action sequences, as well as the related costs or constraint factors. 
The model constitutes a formal basis for describing, communicating and infer-
ring particular operational truths as well as the belief and knowledge represent-
ing the awareness or comprehension of such truths. For the reasoning of ADS 
behaviors and safety risks, each system operational state is explicitly formulated 
as a conjunction of environmental state and some collective states showing the 
ADS capabilities for perception, control and actuations. Uncertainty Models 
(UM) are associated as attributes to such state definitions for describing and 
quantifying the corresponding belief or knowledge status due to the presences 
of evidences about system performance and deficiencies, etc. On a broader per-
spective, the approach is part of our research on bridging the gaps among intel-
ligent functions, system capability and dependability for mission-&safety-
critical CPS, through a combination of development- and run-time measures.  

Keywords: Automated Driving System (ADS), Cyber-Physical System (CPS), 
Embedded Control System (ECS), Knowledge-Base (KB), Uncertainty Models 
(UM), Safety. 
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1 Introduction 

Cyber-Physical Systems (CPS) and the underlying Embedded Control Systems (ECS) 
are the key enabling technologies behind autonomous vehicles, smart production sys-
tems, medical equipment and many other intelligent products. Many of these products 
are inherently safety- or mission-critical as the physical aspect, represented by the 
dynamics or energy flows under control, implies that a system failure could lead to 
unreasonable risks.  This calls for, on the one hand, advanced formalisms, methods 
and tools for verification and validation, correct-by-construction and fault avoidance; 
and on the other hand, the deployment of specific safety functions and technologies 
for fault tolerance and fault treatment. Currently, the cyber aspect, characterized by 
information treatment and control logics for the operation perception, control of be-
haviors [1], is on an increasing degree based on Artificial Intelligence (AI), particular-
ly Machine Learning (ML) and Artificial Neural Networks (ANN). The implementa-
tion relies on the provision of embedded resources for the sensing, communication, 
computation and actuation with an increasing degree of heterogeneity (e.g. a mixture 
of generic microcontrollers and specific AI accelerators). In this paper, we refer to the 
actual ability of a CPS to conduct specific tasks or actions regarding the system op-
erations as CPS Capability.  
 
Automated Driving System (ADS) [2] is a type of advanced CPS that can support 
self-governed driving behaviors in complex operational environments (e.g. public 
streets), with many potential economic, social and environmental benefits. However, 
being inherently safety critical, ADS is currently facing some fundamental challenges 
in risk management that necessitate a holistic strategy for fault avoidance, fault toler-
ance and fault treatment. One key factor behind the challenges is that the operation of 
ADS exhibits several types of uncertainty that make conventional quality assurance 
through formal verification and validation inadequate. In particular, in regard to the 
operational environment of ADS, there is an inherent uncertainty due to the emergent 
properties of traffic environment where heterogeneous traffic objects are composed 
randomly. Meanwhile, uncertainty can also show up in the perception of operational 
situations due to the design and performance issues of sensors (e.g. radar and camera) 
and services, such as delimited knowledge about the environment, unoptimized sensor 
position in vehicle, insufficient communication bandwidth. In general, a system could 
exhibit nondeterministic behaviors due to emergent behaviors and faults in the im-
plementation because of partial specification, data inconsistency, imperfect synchro-
nization and hardware reliability, etc. For ADS with AI functions, nondeterministic 
behaviors can also arise due to the gap between training set and real operational con-
ditions, the inherent stochasticity in algorithms, and the complex interplay with actual 
CPS capability regarding perception, communication, computation and actuation. 
  
This paper presents the design of a Knowledge-Base (KB) strategy [3] for a systemat-
ic treatment of such uncertainties of CPS and their system-wide implications on de-
sign-space and state-space. The approach is part of our research on bridging the gaps 
among intelligent functions, system capability and dependability for mission-&safety-
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critical CPS, through a combination of development-time and run-time measures [4]. 
In particular, the run-time measures are related to the design of embedded services for 
the awareness of operational situations and capabilities including the uncertainties, 
and then the assessment of operational risks. The development-time measures are 
centered on the enrichment of existing system ontology and frameworks (e.g. EAST-
ADL [5]), by addressing the composition of heterogeneous functions and compo-
nents, including those based on AI technologies. 
 
The rest of this chapter is structured into the following sections:  Section 2 provides 
an overview of related concepts in regard to the ADS architecture and uncertainty. 
Section 3 presents the proposed KB strategy, including the supported key modeling 
concepts and uncertainty descriptions. An overview of related technologies is given in 
Section 4. Section 5 summarizes our conclusions. 

2 ADS System and Uncertainty 

Fig. 1 provides a schematic overview of ADS where the top-level system aspects are 
given by Environment, Driver and Vehicle. This conceptual view refines the generic 
architectural pattern introduced in [6]. While the Environment and Driver together 
constitute the operational context of ADS, the Vehicle refers to the product content of 
ADS given by a mixed composition of cyber and physical units. In particular, the 
Environment denotes the context in which ADS operates. It is defined by some exter-
nal static and dynamic situations, including the road situation (e.g. lanes and road 
geometry) and the traffic situation (e.g. adjacent vehicles and pedestrians). The Driver 
refers to the person in the vehicle who interacts with the ADS [7]. The Vehicle, repre-
senting the product content of ADS, corresponds to a complete car or truck system. It 
is composed of some functional contents, shown as Autonomous&Automation Func-

Fig. 1. A schematic overview of key aspects of ADS. 
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tions in Fig. 1, and some technical contents, shown as Embedded Computation and 
Communication Capability and Vehicle Plant in Fig. 1.  Such contents collectively 
determine ADS Capability, referring to the ability of ADS to conduct specific driving 
tasks. ADS Capability is a specialized form of CPS Capability mentioned previously. 

 
The functional contents consist of the control logics, organized into a decision hierar-
chy [8, 9] as shown in Fig. 2. The lower two layers, Operation Control and Operation 
Decision, implements a supervisory control strategy for the dynamics of vehicle plant. 
We refer to the control functions of these two layers collectively as VDM (Vehicle 
Dynamic Management). For automated driving, the tactic decision functions in the 
layer above decide the tactic actions, relating to the choice of target points on the 
road, as well as the preferred sequence of moves to reach the target points, such as 
accelerating and veering. The top layer contains strategic decisions for achieving a 
mission (e.g., the choice of routes from city A to city B). We refer to the functions in 
the tactic and strategic layers collectively as TDC (Task Decision and Control), shown 
in Fig. 1. Along with the decision hierarchy, there are also functions for operation 
perception. We refer the functions for the sensing of ADS Environment (defined pre-
viously) as Environment Sensor (ES); and the functions for the transformation of 
monitored environment data into a consolidated world-model as Environment Percep-
tion (EP), also shown in Fig. 1. We refer the plant sensing and actuation functions for 
VDM as SA (Sensor for Actuation of plant) and A (Actuator of plant), respectively.  
 
Across the decision hierarchy from VDM to TDC, an increasing degree of autonomy 
can be observed. Normally, VDM functions in the lower two operational layers are 
dominated by reactive feedback control. The design relies on prior knowledge about 

Fig. 2. The hierarchy of decision and control in ADS and example contents. 
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the plant (Vehicle Plant) in the form of models for the discrete and continuous dy-
namics, with the goal of ensuring highly deterministic behaviors. That is, given a 
particular sequence of inputs, such a function will always produce the same sequence 
of outputs while passing through the same sequence of states. In general, such a func-
tional determinism, together with effective use of well-formulated prior knowledge, 
facilitates the verification and validation. For example, test generation using FSM or 
model-checking is a well-known approach [10]. Compared to VDM, such a prior 
knowledge centric and determinism based approach would be far from being suffi-
cient for the design of TDC as well as the ES and EP functions, due to the associated 
inherent functional uncertainties of ADS. The design has to provide sufficient flexi-
bility of such functions to allow for appropriate compensation of partial or incorrect 
prior knowledge, as well as for effective exploration and management of possible 
outcomes of actions. This implies not only a higher level of autonomy, but also an 
increased non-determinism that makes the verification and validation challenging.  
 
For ADS, we distinguish two types of inherent functional uncertainty as for other 
autonomous systems [11, 12]: 1. Aleatory Uncertainty; and 2. Epistemic Uncertainty. 
The aleatory uncertainty is related to the contextual complexity of ADS. It is caused 
by the emergent properties from random interactions of heterogeneous traffic objects 
in the physical operational environment (i.e. Environment), under different conditions 
of weather, road, and physical locations. The presence of high aleatory uncertainty 
makes it difficult for the TDC to predict the dynamic trajectories of traffic objects, 
and thereby the upcoming traffic situations and the effects of its actions on the envi-
ronment. Aleatory uncertainty is also known as statistical uncertainty and is repre-
sentative of unknowns that differ in each particular operation scenario. The epistemic 
uncertainty is related to the design and performance of perception functions (i.e. ES 
and EP).  It is caused by the effects of probabilistic algorithms, restricted observabil-
ity, physical limitation, hidden variables, under-specification or semantic ignorance 
when monitoring and processing the environment situations.  Epistemic uncertainty is 
also known as systematic uncertainty. In CPS, these functional uncertainties are fur-
ther affected by the actual capability of system providing the implementation (i.e. 
CPS Capability). For ADS, any anomaly regarding the assumed ADS Capability, i.e. 
the faults or errors exhibited by the computation and communication resources and 
vehicle plant, could result in additional nondeterminism of the corresponding control 
functions. One related constraint is functional safety, referring to the freedom from 
unacceptable risk of hazards as specified by ISO 26262. It requires a set of measures 
for fault avoidance, fault tolerance and fault treatment. One key aspect is the support 
for a formal specification of such uncertainties and thereby for a qualified anomaly 
detection and risk mitigation. We present in the follow-up sections our strategy to an 
enriched ADS description, emphasizing the knowledge and uncertainty modeling. 

3 Design of Knowledge-Base (KB) Strategy  

The strategy introduced here aims to allow the above-mentioned types of uncertainty 
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to be treated systematically together with a well-defined ADS system ontology. The 
modeling packages, shown in Fig. 3, include ADS Architecture Model, ADS 
Knowledge Base,  and ADS Belief&Uncertainty Model. The key aspect is related to an 
integrated formal specification of system commitments for automated driving in vari-
ous operational environments, and then the exploitation of such information for the 
systems engineering as well as the design of embedded services for anomaly detection 
and risk mitigation. As the base technologies, the following two existing modeling 
frameworks are adopted and extended for ADS: 1. EAST-ADL (Electronics Architec-
ture and Software Technology - Architecture Description Language) [5] for the de-
velopment of ADS Architecture Model; and 2. U-Model (Uncertainty conceptual 
model for CPS) [13] for the development of ADS Belief&Uncertainty Model. The 
ADS Knowledge Base presented below provides the support for a formal specification 
of the operational properties across the ADS Environment, Driver and Vehicle, effec-
tively merging any semantic gaps between the system description and beliefs.  
 
The package diagram in Fig. 3 shows dependencies between the modeling packages. 
The ADS Architecture Model contains all the functional and technical design com-
mitments regarding the Environment, Driver and Vehicle. The ADS Knowledge Base 
depends on the ADS Architecture Model as the corresponding description of opera-
tional properties relies on the design. These operational properties in turn constitute 
the basis for the uncertainty and belief statements by the ADS Belief&Uncertainty 
Model. Such statements can then be used to refine requirements, design solutions, 
verification and validation cases in the ADS Architecture Model when necessary.  

 
3.1 ADS Knowledge-Base (KB)  

Here, the term ADS Knowledge-Base (KB) refers to the models that stipulate the 
fundamental facts in regard to the overall system operational states, action sequences, 
as well as the related costs or constraint factors. The model constitutes a formal basis 
for describing and inferring particular operational truths as well as the belief and 
knowledge representing the awareness or comprehension of such truths.  

 
For the reasoning of ADS behaviors and operational risks, we formulate each system 
operational state as a conjunctive state: 

 ; ,   (1) 

Here, the state variable  refers to the operational condition of an ADS system at a 

Fig. 3. The modeling packages and their dependencies. 
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particular time point k. The discretized behavior description assumes a discretization 
of time t with (i.e. the set of non-negative real numbers) and a fixed time in-
terval t > 0. Every time of k corresponds to a discrete time step with  and 

 (i.e. the set of non-negative integers). The state  is given by the conjunc-

tion (logical AND) of , referring to the respective operational 

conditions of Environment, Driver and Vehicle at the same time point. These state 
variables collectively define how the ADS react to the actions by the environment, the 
driver and the vehicle. We use S to denote the overall state space of an ADS, i.e. all 
possible state conditions, which is the subset of all possible combinations of opera-
tional conditions of environment, driver and vehicle ( A par-
ticular behavior of ADS is then a sequence of chosen operational conditions:  

  (2) 

where the variable H denotes the length of this sequence in terms of a time horizon 
value given by max k. Furthermore, we define complete trajectory or operational 
trace of ADS as:  

 ;   (3) 

Here, we use  to denote the overall trajectories of an ADS, which is the subset of all 
possible combinations of all state and action pairs ( ) with A for all possible ac-
tions. Each segment of the trajectory consists of a pair of operational condition 

and operational action  at the time instance k. The operational action can 

be given by an action of environmental object (e.g. braking of preceding vehicle), a 
driver action (e.g. starting ADS), an action of ADS vehicle (e.g. steering to the right), 
or a combination of multiple actions at the same time instance. For an ADS, the 
choice of its action at any given instant is given by its Autonomous&Automation 
Functions according to the current as well as the past operation perceptions.  
 
ADS operational performance is measured by the cost function associated to a trajec-
tory . Accordingly, each requirement or constraint on the system is a proposition 

 that can be satisfied or not satisfied:  

 or ;   (4) 

The variable  denotes all requirements. Fig. 4 illustrates the overall state space (S) 
of an ADS system and some of two possible trajectories ( ) and ( . 
The first one represents a fail-safe scenario, where hazards are successfully detected 
at with  as the safety measure for returning to the safe state . The second 

one represents crash scenario with final state given by . In system development, 

safety requirements are used to specify such trajectories.    
 
In ADS, the VDM functions implement the driving actions selected by the associated 
TDC functions (see also Fig. 1). We have used  to denote the vehicle state 
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at time k. The state is defined as follows: 

  (5) 

We let (  )  be the vehicle position relative to some fixed coordinate frame 
and  be the yaw angle of the vehicle, and  be the angular speed. The 
vehicle moves forward with speed , where  is the maximum speed. 
The acceleration is given by a.  The basic motion of the vehicle is then given by:   

              Continuous time:  (6) 

 Discrete time:   

Here, u denotes the request of tactic action from the TDC to the VDM as the choice of 
and , i.e. . For example, at a particular time instant, the motion of 

the vehicle is determined by: ; ; and . For a tactic de-

cision Turn_left, we have ; ; ; For a tactic decision 

Stop, we have  ; and . Formally, with  possible choices of ac-
tions A by TDC, we have: 

  (5) 

 
3.2 Integration of Uncertainty Modeling and System Description 

For ADS, the introduction of Uncertainty Models (UM) aims to constitute a formal 
basis for describing and inferring particular operational truths on the basis of the  
Knowledge-Base (KB). By describing and quantifying the corresponding belief or 
knowledge status, such models describe the degree of awareness or comprehension of 
some truths. The models can be used by system developers for the reasoning of func-
tional and technical commitments at design-time or by embedded services for anoma-

Fig. 4. Overall state space (S) of an ADS and some of the possible trajectories. Each point
represents a state Sk , which is by a conjunction (logical AND) of states of the environment
( ), the driver ( ), and the vehicle ( ). 
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ly detection and risk mitigation at run-time. To this end, one key base technology 
adopted in our approach is the U-Model (Uncertainty conceptual model for CPS) [13], 
which aims to constitute a reference framework and standard. The core of the U-
Model is a Belief Model, with the key meta-model concepts shown in Table 1.  

Table 1. Key meta-model concepts of U-Model [13]. 

We also adopt EAST-ADL [5] as the base technology for the description of the func-
tional and technical commitments in the system design. The key concepts of integrat-
ing KB, U-Model, and system description in EAST-ADL for ADS are shown in Fig. 
5. With the integration, Evidence in uncertainty description can have its semantics 
given by some associated operational behavior, operation trajectory, or operation 
performance, which is defined by KB (see Equation 2, 3, 4). Such operations are con-
ducted by system objects given as EAPrototype, which is an abstract class in EAST-
ADL for the target vehicle or its environment objects and operator. The factors that 
lead to uncertainty are declared by the associations from IndeterminacySource to the 
EAST-ADL abstract classes for system environment, system functions, hardware 
components, and system anomaly. With such associations, the sources of non-
determinism or indeterminacy are systematically distinguished, including the aleatory 
uncertainty, epistemic uncertainty, and the deficiency of ADS capability, as defined in 
Section 2.  

The EAST-ADL FunctionPrototype and HardwareComponentPrototype refer to the 
application functions in an automotive vehicle and the related hardware components 

K
ey

 C
on

ce
p

ts
 

 BeliefAgent: a physical entity owning one or more Beliefs about phenomena/notion. 
 Uncertainty: a state whereby a BeliefAgent does not have full confidence in a Belief it holds. 
 Belief: an implicit subjective explanation of some phenomena or notions by a BeliefAgent. 
 BeliefStatement: a concrete and explicit specification of some Belief held by a BeliefAgent 

about possible phenomena or notions belonging to a given subject area. 
 Evidence: an observation or a record of a real‐world event occurrence, or, alternatively, the 

conclusion of some formalized chain of logical inference for determining the truthfulness. 
 EvidenceKnowledge: an objective relationship between a BeliefStatement and relevant 

Evidence. It identifies if the corresponding BeliefAgent is aware of the appropriate Evidence. 
 Indeterminacy: a situation whereby the full knowledge necessary to determine the required 

factual state of some phenomena/notions is unavailable. 
 IndeterminacySource: factors that lead to Uncertainty. 
 IndeterminacyNature: the specific kind of indeterminacy that can be InsufficientResolution 

MissingInfo, Nondeterminism, and a combination of more than one kinds of indeterminacy. 
 IndeterminacyKnowledge: an objective relationship between an IndeterminacySource and 

the awareness that the BeliefAgent has of that source. 
 KnowledgeType:  an enumeration) of four values: 
1. KnownKnown – BeliefAgent consciously aware of some relevant aspect. 
2. KnownUnknown (Conscious Ignorance) – BeliefAgent aware of the ignorant of some aspect. 
3. UnknownKnown (Tacit Knowledge) – BeliefAgent not explicitly aware of some relevant as‐
pect that it may be able to exploit in some way. 

4. UnknownUnknown (Meta Ignorance) – BeliefAgent unaware of some relevant aspect. 
 Measurement: the optional quantification (or qualification) that specifies the degree of 

indeterminacy of the IndeterminacySource. 
 Measure:  an objective concept specifying method of measuring uncertainty. 
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providing the computation and communication capability. As mentioned earlier, ADS 
has an increased heterogeneity in regard to the composition of functions and compo-
nents through the inclusion of AI functions and specific hardware components. The 
modeling support presented constitutes a formal basis for clarifying and managing the 
related uncertainties.  For the AI related artefacts, the U-Model provides support for 
the declaration of uncertainty patterns (e.g. periodic and random) and uncertainty 
measurement with probability, ambiguity and fuzziness. See [13] for further details.  

The modeling support constitutes a formal basis for the reasoning of ADS behaviors 
and safety risks. As example, let’s assume a vehicle system is subject to a behavior 
requirement on its state given as the relation of its position to the positon of other 
vehicles: . Due to uncertainties in the system, both variables cannot be deter-
mined exactly. The uncertainty of monitoring function (i.e. IndeterminacySource) is 
defined with an additional belief statement (i.e. BeliefStatement), where observed  
and  are given as independent random variables (i.e. Evidence) with the uncertainties 
quantified with normally distribution ( ) and )). The meas-
urement is shown in Fig. 6 (a) where the monitoring of variable  delivers:  
and . Similarly, the monitoring of variable  results in   and . 
To validate the stipulated constraint ,  we can evaluate . As both  
and  are normal distributed, the result of  is normally distributed itself, with 

. The distribution of this new variable is shown in 
Fig. 6 (b). The area under the distribution at a distance below  then represents the 
probability that the initial constraint is violated and leads to a hazardous state. 

Fig. 5. Key design concepts of integrating UM, KB, and EAST-ADL for ADS description. 
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4 Related Work  

Domain specific modeling frameworks have been developed for safety and mission-
critical cyber-physical systems, such as AADL [15] and EAST-ADL [5]. Compared 
to the more generic systems modeling framework, SysML [14], these technologies 
provide dedicated support for the domain concepts regarding both methodology and 
technology. For the specification of uncertainties, all these modeling technologies 
need to be enhanced with additional modeling support for the descriptions of related 
patterns and metrics. The work presented in this paper has it primary goal of consoli-
dating the architectural and operational concepts of ADS so that the descriptions of 
uncertainty can be semantically justified. Uncertainty as a condition of information 
quality has been one key concept of information theory [16]. The measure of entropy 
has been used for the quantification the information disorder or uncertainty. For CPS, 
the studies of uncertainties presented in [11, 12, 13, 17] constitutes the basis of our 
work. For CPS, explicit uncertainty modeling also constitutes the basis for effective 
diagnostics, dynamic anomaly detection and quality-of-service adaption [18, 19, 20].  

5 Conclusion 

CPS as an engineering field cuts across a number of application domains and tech-
nical areas beyond the conventional domains of control engineering and embedded 
systems. This work aims to support the integration of separately developed heteroge-
neous functions and components (including AI functions and components) by propos-
ing a Knowledge-Base (KB) strategy for a systematic treatment of uncertainties. 
Through an integration with U-Model and EAST-ADL, the approach makes it possi-
ble for each uncertainty description to have well-defined semantics and architectural 
targets. Future work will consider the enrichment of uncertainty modeling for the 
analysis of safety knowledge for ADS as well as the synthesis of safety rules. 

(a)           (b) 
Fig. 6. Probabilistic uncertainty measurements for two monitored variables. 
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