
Report from a workshop held at the Scandinavian Conference on System and Software Safety (SCSSS) 2022.

Managing Continuous Assurance
of Complex Dependable Systems

Fredrik Warg§ and Anders Thorsén
RISE Research Institutes of Sweden

Anders Cassel, Omar Jaradat and Negin Nejad
Qamcom Research and Technology AB, Sweden

Stig Ursing
Semcon Sweden AB

DeJiu Chen
KTH Royal Institute of Technology, Sweden

Abstract—The SALIENCE4CAV project has done work on
enabling continuous assurance, which aims to ensure safety is
maintained throughout the entire lifecycle of a product, system,
or service. One key technique is the use of safety contracts
and modular assurance cases for systematically managing safety
responsibilities and requirements across different stakeholders.
This report summarizes outcomes from a workshop where discus-
sions were held around this work. The participants were predomi-
nantly working in domains with high dependability requirements,
such as automotive. Knowledge, tools, and organizational issues
are seen as some key obstacles, but interest is high, and the
community realizes the need for enabling continuous assurance.

Index Terms—dependable systems, safety, cybersecurity,
contract-based design, safety contracts, continuous assurance

I. INTRODUCTION

Systems where safety and cybersecurity assurance are vital
are increasing in complexity amid a growing demand for
significantly faster update cycles than before. Various factors
drive this shift. For example, the successful market introduc-
tion of an automated driving system (ADS) likely requires
an ability for post-release updates to improve performance
and grow the number of use cases over time. In addition,
changes in operating conditions may require system updates,
e.g., re-training of machine learning models in the perception
subsystem for new types of objects, or updates to the driving
policy based on new incident data. Hence, integrating field
monitoring into the development loop also becomes necessary.
Connected dependable systems also face a constant need
for rapid updates due to the evolving cybersecurity threat
landscape, requiring adaptations to new threats and security
fixes. Some driving reasons and necessary timescales may be:

• Adapt to changing customer and business needs. → Year–Months
• Enabler for gradual feature and performance growth. → Months–Weeks
• Adaption to changes in operational conditions. → Weeks–Days
• Security fixes / protection against new threats. → Days–Hours

Version 1.3, 2023-11-06. This work is licensed under CC BY 4.0. To view
a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The
work was supported by the Strategic Vehicle Research and Innovation (FFI)
programme in Sweden, via the project SALIENCE4CAV (ref. 2020-02946).

§Corresponding author: fredrik.warg@ri.se.

Fig. 1: The ”Stairway to heaven” towards continuous updates.

In many domains, iterative practices have seen increasing
adoption in the last two decades; e.g., as described in the
”stairway to heaven” model [1] (see Fig. 1) where organi-
zations move from traditional to agile development, through
continuous integration (CI) and continuous development (CD),
to finally using feedback and data collection to continually im-
prove their products. For dependability-critical product devel-
opment, however, the added challenge of managing assurance
of e.g. safety and cybersecurity—often including compliance
to standards (e.g., [2], [3] for road vehicles)—for each release
has slowed the uptake of such methods, even if attempts have
been made to define suitable methodologies, e.g., [4]–[6].

The SALIENCE4CAV project1 has been working on contin-
uous assurance using safety contracts and modular assurance
cases [7], [8]. A workshop with industry practitioners was held
in conjunction with the Scandinavian Conference on System
and Software Safety (SCSSS) 2022. We discussed the state of
practice, as well as presented and discussed the use of safety
contracts as part of a way of working (WoW) with continuous
assurance. This report summarizes live poll questions and
discussions from this workshop. Some key observations were
that a majority of the practitioners were unfamiliar with the
concept of safety contracts, despite over a decade of work in
the research community on this topic. There is an interest in,
and perceived need for, trying to apply such practices, however
organizational and tool issues are seen as obstacles.

1https://salience4cav.se

1

http://creativecommons.org/licenses/by/4.0/
https://salience4cav.se

II. PARTICIPANT PROFILES AND STATE OF PRACTICE

Before diving into specific topics, we asked the participants
some background questions. Note that the results were col-
lected using a live polling tool2, and hence the number of
answers per question may vary since some participants may
have failed to, or elected not to, answer specific questions.

The first set of questions (see Fig. 2 for poll questions and
results) were related to the background of the participants,
i.e., the type of products they work with, and their role in
the company. Almost all participants work with safety-critical
products in some sense, and a majority are in the automotive
domain. Most participants have safety-related roles.

The second set of questions (see Fig. 3) concerned the
use of agile development, CI, CD, and DevOps respectively
in their current workplace (either the company where they
are currently employed, or where they have their current
assignment if they do consulting). The results show that agile
development and continuous integration are common, but not
universal, practices. Far fewer answer that they practice con-
tinuous deployment and DevOps, but a few already do apply
these practices in safety-critical domains. The participants
who answered ”not applicable” mainly relate to persons not
working in development organizations, such as researchers.

In the third set of questions (see Fig. 4), participants were
asked whether they thought that CI/CD increased or decreased
the effort required for safety assurance. The majority indicated
that it increased the effort, while a notable portion mentioned
a decrease. Additionally, participants were asked whether they
believed that system safety could be enhanced through a
CI/CD WoW. In this case, the majority expressed confidence
that it could indeed lead to safety improvement.

III. CHALLENGES WITH CONTINUOUS DEPLOYMENT

The second part of the workshop focused on challenges
associated with CI/CD in the context of dependability-critical
development. These challenges were introduced in the presen-
tation in Appendix A.

After the presentation, a discussion took place in a world
café format. This involved participants forming groups to
address a series of predetermined questions set by the or-
ganizers. Towards the end of the session, the essential take-
aways from each group’s discussions were shared with the
entire workshop. Groups had the flexibility to choose which
questions they discussed, as time constraints often made it
challenging to cover all topics. Lastly, participants were invited
to individually respond to a set of live poll questions.

A. World café on ”Challenges with CI/CD”

Questions asked in this part of the workshop were:
• How to manage and reconcile the impacts of product-

line variability, necessary changes, and unexpected side
effects?

• What parts of the development life cycle need to be con-
sidered in a CI/CD pipeline to support safety assurance?

2We used QuestionPro LivePolls. See https://www.questionpro.com/

(a) I mainly work with. . .

(b) What is your organization’s primary business?

(c) What is your primary role?

Fig. 2: Background questions to workshop participants.

• How would consistency between changes in safety re-
quirements, architecture, implementation, and different
variants be assured in a CI/CD toolchain?

• How to continuously maintain the safety case evidence
after a system change or increment?

• How can the safety case be projected to highlight its
updated parts after a system change efficiently?

• How the safety claims can be validated against the new
safety boundaries or thresholds?

• How do you think CI/CD works with current safety
standards and regulations?

Some (unstructured) notes were taken. Here is a summary

2

https://www.questionpro.com/

(a) Do you, at your company/assignment, practice agile develop-
ment?

(b) Do you, at your company/assignment, do continuous integration?

(c) Do you, at your company/assignment, do continuous deploy-
ment?

(d) Do you, at your company/assignment, practice DevOps?

Fig. 3: State of practice questions.

of the key points in response to the questions raised3:

Managing and Reconciling Impacts

Impact analysis is crucial to managing product-
line variability and unexpected side effects. Com-
plex systems require proper processes, automation,
and modularity. Maintaining separate branches and
safety documentation helps manage changes. Con-
tinuous integration (CI) can lead to unaccounted
side effects, particularly in complex systems. Sep-
arate safety cases for each release are necessary.

3ChatGPT 3.5 (version 2023-09-25, https://chat.openai.com/) has been used
to help summarize the notes. Editing has been done to the generated summary.

(a) How do you think CI/CD changes the total safety assurance
work?

(b) Do you believe CI/CD can improve system safety development
over traditional development models with less frequent releases?

Fig. 4: Expected effects of CI/CD on safety assurance.

Maintaining a structured process is vital, with teams
working on hazard analysis (HARA) and safety
goals, followed by the development of safety cases.

Parts of Development Life Cycle in CI/CD

Validation, data collection specifications, and all
aspects of the development life cycle need to be
considered in a CI/CD pipeline. Tooling gaps and
inconsistencies can occur due to different tools and
practices in different organizations or different parts
of an organization, or lack of interoperability be-
tween tools. Safety validation should occur at the
vehicle level in the CI/CD chain. There’s a split
between traditional waterfall and CI/CD approaches,
leading to challenges in managing safety require-
ments.

Ensuring Consistency

Ensuring consistency between changes in safety re-
quirements, architecture, implementation, and vari-
ants can be challenging. Automation, traceability,
and regression testing help maintain consistency.
The frequency of safety case releases depends on
company culture and architectural changes.

Continuously Maintaining Safety Case Evidence

Impact analysis, automation, and understanding
what is being delivered are key to maintaining the
safety case. Automation and simulation are essential,
but manual steps such as impact analysis are still
required. Safety assurance often occurs in batches
of changes.

Projecting Safety Case Updates

Full automation according to e.g., ISO 26262 stan-
dard (for automotive safety) is ideal. Automation and
detection of unsafe conditions play a crucial role in
projecting updated safety case parts.

3

https://chat.openai.com/

Validating Safety Claims

Safety performance indicators (SPI) can be used
to validate safety claims. The adaptation of safety
implementation is critical when implementing CI,
particularly in the context of system changes.

CI/CD and Safety Standards/Regulations

CI/CD doesn’t necessarily contradict safety stan-
dards but poses practical challenges. Adapting
CI/CD to traditional safety standards and regulations
can be difficult. There’s a gap between agile devel-
opment and traditional safety practices, with unclear
guidance in standards like ISO 26262. While CI/CD
and safety standards are not inherently incompatible,
they may require process enforcement to ensure
compliance.

TL;DR4

The notes highlight the complexities and challenges
associated with integrating CI/CD into the devel-
opment and maintenance of safety-critical systems.
It underscores the importance of impact analysis,
automation, and consistency in managing changes
while dealing with evolving safety requirements and
standards.

B. Live Poll on Challenges

Some live poll questions were asked at the end of the
”challenges” section (see Fig. 5 for results). In short, the
sentiments were mixed, but with a slight leaning toward a
positive belief, when it comes to the question if using a
CI/CD workflow will be more capable of reproducing the
safety-related work (for new versions) than traditional WoW.
Additionally, a notable majority of participants indicated that
a freeze point is necessary to align safety assurance before a
release. In other words, there’s a belief that maintaining an “al-
ways ready for release” state, akin to some non-dependability-
critical CI/CD WoW, might not be feasible in this context.

IV. SAFETY CONTRACTS AS POTENTIAL SOLUTION

The third part of the workshop delved into the topic of
safety contracts for safety assurance, as introduced in the pre-
sentation provided in Appendix B. Much like the “challenges”
section of the workshop, this portion featured world café-style
discussions after the presentation and finally some individual
live poll questions.

A. World café on ”Safety Contracts as Potential Solution”

Questions for this part of the workshop:
• What things in safety-contract methodology are prevent-

ing this methodology from being used in practice?
• If suitable tools existed, how would safety contracts

benefit different development organizations at different
abstraction levels?

4Internet slang for ”too long, didn’t read”, often used to introduce a key
message that summarizes a longer discussion or explanation.

(a) Do you think CI/CD is more capable of reproducing the
deliverables and all safety-related verification and validation work
products than traditional WoW?

(b) Do you think it is feasible to identify and analyse potential
failure modes (that system changes might frequently introduce) by
following CI/CD WoW?

(c) Do you believe CI/CD shall consider system boundaries and
requirements freeze at some point during the development lifecycle?

Fig. 5: Challenges with CI/CD for dependable systems.

• What in the current development methods are most dif-
ficult to master when practising agile development and
simultaneous engineering at several abstraction levels?

• How would safety assurance measures (e.g. audits, as-
sessments, etc.) benefit from safety-contract-based de-
sign?

• What challenges are there to applying component-based
design for ADS at all abstraction levels, i.e. from Item
level to atomic SW- and HW-component level?

• How to derive safety contracts systematically (e.g. driven
by safety analysis outcomes)?

• How to measure and ensure the completeness, correct-
ness, and consistency of safety contracts?

• How to continuously check that the safety contracts
capture the guarantees of the desired safe performance?

Summary of notes:

Challenges Preventing Adoption of Safety Contracts

Formalism in safety contracts may not be appeal-
ing to software developers. Academia may provide
expertise, but there is doubt about industry demand.
Lack of available tools for implementing safety con-
tracts. Interface issues when aligning development
with suppliers. Difficulty in defining the appropriate
level of detail for safety contracts. Challenges in
applying safety contracts at different abstraction
levels and ensuring compatibility.

Benefits of Suitable Tools for Safety Contracts

Suitable tools could benefit ”code-near” develop-
ment and provide an atomic focus for developers.
Safety contracts eliminate assumptions about com-
ponent interfaces, especially in software develop-

4

ment. Quality advantages and a clearer definition
of requirements and boundaries can be achieved.
Machine learning tools might enhance the concept
but need careful qualification.

Challenges in Agile Development and Simultaneous
Engineering

Mastering impact analysis at all levels. Establishing
a comprehensive model of all dependencies. Ensur-
ing traceability from top to bottom. Reconciliation
with standards and regulatory requirements. Unclear
benefits of safety contracts at certain abstraction
levels and ensuring contract assumptions are correct.

Benefits of Safety Contracts for Safety Assurance
Measures

Safety contracts could potentially reduce the need
for extensive reviews. The possibility of using mod-
ular reviews for safety contracts.

Challenges in Applying Component-Based Design in
All Abstraction Levels

Challenges are mentioned, but specific details are
not provided in the notes.

Systematic Derivation of Safety Contracts

Inclusion of elements like contracts for sched-
ulers, CPU, and memory budgets. Consideration
of stochastic, probabilistic, and statistical contracts.
Uncertainty in requirements and the need for flexi-
bility in safety contracts.

Ensuring Completeness, Correctness, and Consis-
tency

Challenges in measuring completeness, consistency,
and correctness of safety contracts. Suggestions of
using tools like Prolog for consistency checks. The
need to define complete and consistent safety con-
tracts.

Continuous Checking of Safety Contracts

Suggested inclusion of safety contract validation to
check that they capture the desired properties. The
importance of creating models at the appropriate
level for validation was discussed.

TL;DR

The notes address the challenges and potential ben-
efits of using safety contracts in agile development,
emphasize the need for suitable tools, and raise
questions about the completeness, correctness, and
consistency of safety contracts. It also highlights the
importance of continuous validation and the need for
flexibility in handling changing requirements.

B. Live Poll on Safety Contracts

The live poll questions (see Fig. 6 for results) indicated
that a majority of participants were not acquainted with the
concept of safety contracts prior to the workshop, although
many had heard of it. However, after the presentation and
subsequent discussions, an overwhelming majority expressed
belief in the potential benefits of safety-contract-based design
for their organizations, and most were also willing to consider
implementing it provided suitable tools were available.

(a) Did you ever hear of safety contracts and their usage in safety-
critical system engineering before today?

(b) Do you believe safety-contract based design could benefit
your organization (e.g., when negotiating requirements and changes
between organizations)?

(c) Would you consider using contract-based design if suitable tools
existed?

Fig. 6: Use of safety-contract based design.

V. OPEN DISCUSSION

The last part of the workshop was an open discussion and
questions and answers session. Again notes were taken and
are summarized below:

The discussion was mainly about the concept of
safety contracts in the context of software and hard-
ware development. Key points:

• Safety contracts serve as agreements between
separate development teams, defining assump-
tions and guarantees related to interfaces and
interactions between software (SW) and hard-
ware (HW) components.

• The nature of safety contracts is a point of
consideration, with questions about what these
contracts should look like.

• Existing languages and syntax can express and
define the behaviors of safety contracts. Some
research has been conducted on these languages,
and their suitability for specific applications and
problem domains is being examined.

5

• Safety contracts can be presented in various
forms, including formal, informal, or semi-
formal. Some tools and architectural descrip-
tion languages (ADLs) can derive safety con-
tracts, making it possible to perform consistency
checks for these contracts.

• To apply safety contracts in daily work, they can
be implemented at various levels of system ab-
straction. Implementing them at the architectural
level may be particularly beneficial.

• The completeness of derivations in safety con-
tracts can be verified through safety analysis,
ensuring that assumptions and guarantees are
comprehensive.

• Safety contracts can be seen as a more formal
and intense version of requirements, and their
benefit lies in the potential for continuous as-
surance and automated impact analysis.

• Automation, including the use of tools and
natural language processing, is considered to be
valuable for managing safety contracts. The idea
is to streamline the process and provide logical
consistency within safety contracts.

• There is a distinction between a contract and a
traceability tool, with the possibility of needing
a dedicated contract management tool to handle
safety contracts effectively.

TL;DR

Safety contracts are agreements that define inter-
actions and expectations between different teams
working on software and hardware components.
They can be presented in various forms, and au-
tomation and tools are considered important for
their management and verification. The focus is on
ensuring logical consistency within safety contracts
to enable continuous assurance.

VI. CONCLUSION

The objective of this workshop was to disseminate knowl-
edge, assess interest, and collect feedback on the topic of
continuous assurance for dependable systems, and especially
considering the use of safety contracts, which is a topic under
consideration within the SALIENCE4CAV research project.
As summarized in this report, the topic appears to be highly
relevant and aligns with the challenges that many organizations
are presently grappling with. The utilization of safety con-
tracts and modular assurance cases is viewed as a promising
approach to facilitate continuous assurance for dependability-
critical systems. However, there are some hurdles to overcome
regarding tooling, ease-of-use, and integration in the WoW.
There are also beliefs that CI/CD may lead to more total effort
spent on assurance, and that one would need a freeze period
to sync development and assurance work before each release,
something he authors of this report believe could be addressed
with an integrated approach, e.g., as described in [5]. It is clear
that there are still issues to solve in order to bring the theories
of safety contract-based design to widespread practical use.

ACKNOWLEDGMENT

We would like to extend our gratitude towards everyone
who participated and helped make this a lively and rewarding
workshop, and to the organizing committee of the SCSSS
conference and all participants in the SALIENCE4CAV project
for their support in making the workshop happen.

REFERENCES

[1] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ”stairway
to heaven”–a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,” in
2012 38th euromicro conference on software engineering and advanced
applications. IEEE, 2012, pp. 392–399.

[2] ISO, “ISO 26262:2018 Road vehicles – Functional safety,” 2018.
[3] ISO/SAE, “ISO/SAE CD 21434:2021 - Road Vehicles – Cybersecurity

engineering,” 2021.
[4] T. Stålhane, T. Myklebust, and G. Hanssen, “The application of safe scrum

to IEC 61508 certifiable software,” in 11th International Probabilistic
Safety Assessment and Management Conference and the Annual European
Safety and Reliability Conference, 2012, pp. 6052–6061.

[5] F. Warg, H. Blom, J. Borg, and R. Johansson, “Continuous deployment for
dependable systems with continuous assurance cases,” in 2019 IEEE Int.
Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE, 2019, pp. 318–325.

[6] C. Fayollas, H. Bonnin, and O. Flebus, “SafeOps: A concept of contin-
uous safety,” in 2020 16th European Dependable Computing Conference
(EDCC). IEEE, 2020, pp. 65–68.

[7] I. Bate, R. Hawkins, and J. McDermid, “A contract-based approach to
designing safe systems,” in Proceedings of the 8th Australian workshop
on Safety critical systems and software-Volume 33. Australian Computer
Society, Inc., 2003, pp. 25–36.

[8] J. L. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y. Oakshott,
“The who, where, how, why and when of modular and incremental
certification,” in 2nd IET International Conference on System Safety. IET,
2007, pp. 135–140.

6

Continuous- Integration & Deployment
for Automotive Safety Systems

Omar Jaradat
SCSSS’22 - workshop

Nov 23, 2022
Lindholmen

CI/CD

• Continuous integration (CI)- short-lived branches that are merged into a shared trunk several times a day
where a series of automated tests give feedback about the changes introduced
– Examples of branching strategies:

• GitFlow
• GitHub Flow
• GitLab Flow
• Trunk-based development (Our work assumes TBD as the used strategy)

• Continuous delivery (CD)- after continuous integration, continuous delivery prepares the software for
delivery and ensures that the software can be reliably released at any time.

• Continuous deployment- after CI and CD, changes are automatically deployed into production by a fully
automated process.

1

2

APPENDIX A

7

• Unit tests- to verify single parts of the application. This isolated part of the codebase is referred to as a unit.

• Integration tests- unit tests focus on an individual unit and thus may be insufficient by themselves, integration
tests ensure that multiple components work together correctly and test how parts of the application work
together as a whole.

• Functional tests- these tests make sure that the feature is working as it should

• End-to-end tests- these tests simulate a user experience to ensure that real users have a smooth, bug-free
experience.

• Acceptance tests- these verify the behaviour of the software under significant load to ensure its stability and
reliability.

Continuous Testing

• CI/CD pipeline: a series of steps that should be performed to deliver a new version of the software.

• CI/CD pipelines are focused on improving software delivery via automation.

• A typical pipeline builds the code, runs tests, and then deploys the new software into production in a true
replica of the software development lifecycle.

• Building, merging then testing the code-continuous integration

• Preparing the code for delivery- continuous delivery

• Deploying the code automatically- continuous deployment

CI/CD Pipeline

3

4

• Source: the CI/CD pipeline is triggered when a new code is committed to the repository.

• Build: this is where developers put their new code changes and compile them so they may pass through the initial
testing phase

• Test: this is when the new code is tested through automated tests (for example, running unit tests through
continuous integration). Depending on the size and complexity of the software, this step could last from seconds
to hours. This stage will provide the feedback necessary for developers to fix any issues.

• Deploy: this is when the code is deployed to a testing or staging environment to prepare it for final release i.e
continuous delivery. Usually, the build will automatically deploy once it passes through a series of automated
tests.

• Deploy to production: here the code is released into a live production environment to reach end-users, either
manually or automatically

Pipeline's Engine and Stages

Pipeline Example

Ref. https://katalon.com/resources-center/blog/ci-cd-pipeline

5

6

• A feature flag is a software development tool whose purpose is to turn certain functionalities ON or OFF
to safely test in production by decoupling code deployment from feature release.

• With feature flags, developers can push their changes without waiting for other developers by simply
turning OFF the incomplete portions of the code.

• Incomplete changes can be hidden behind a feature flag while the finished changes can be released. Once
the incomplete is complete, they can be turned ON to become visible to end-users.

• This is important as the whole aim of continuous integration is to integrate changes at least once a day,
so feature flags help maintain the momentum of continuous integration.

Feature Flags

• The term “feature” in agile methodologies and CI/CD does not exist in ISO26262

• What should the feature be mapped to (e.g., function, requirement, unit, component, etc.)?

• How to fit the CI/CD into the V-model? For example:
– Shall CI/CD be limited to SW development, or should it cover the entire V-model?

• How to construct and maintain Safety Cases in the CI/CD pipeline?
– Continuous Safety Assurance (CSA). Maintain already existing items of evidence and highlight the missing ones
– Can we automate the evolution and maintenance of the safety case after each deployment?

• How to manage (split, group, categorize, and prioritize) the features in the backlog? Based on:
– their dependencies?
– Deliveries?
– Change containment and susceptibility to change?
– Safety case or evidence modularity
– Limitation by suppliers?
– ASIL?

Challenges & Quick Thoughts

7

8

The Feature!

Example Feature

9

10

Example Feature

Function Vs. Item Vs. Feature
• Vehicle function (ISO26262): behaviour of the vehicle (intended by the implementation of one or more items)

that is observable by the customer e.g., Autonomous Emergency Brake (AEB)

• Item (ISO26262): System or (combination of systems) that implements a function or part of a function at the
vehicle level e.g., AEB can be an item

• In agile methodology, a feature is a service or function of the product that delivers business value and fulfills
the customer’s need. Each feature is broken down into several user stories, as it is usually too big to be worked
on directly

• Fitting the the agile’s def. of the feature into ISO 26262 context so that it is a building block for a system or systems that implement item(s)
e.g., the brake pedal position is a feature that contributes to accomplishing vehicle functions such as
braking

• Hint: CI/CD features can be inspired and derived from the HAZOP functions list

11

12

Specific proposal

Feature
1..*

1..*

Vehicle function

System

Feature

Component

SW
Unit

or
HW
Part

Thank you!

13

14

Safety assurance &

Safety contracts
in Continuous DeploymentDate: 2022-11-23Anders Cassel

Trends for autonomous systems – A challengeHow to master a complex world of
• Agile development methods & simultaneous engineering
• Central compute architectures
• Frequent system release cycles
• Conform to safety & security standardsHow to master a complex world of
• Agile development methods & simultaneous engineering
• Central compute architectures
• Frequent system release cycles
• Conform to safety & security standards12 APPENDIX B

14

Continuous deployment of ADS in agile development – A complex realitySub-func.ServiceComplex device(s)Execution Platform layerHW layerECU hierarchical architectureApplication layer Sub-func.Sub-func.ServiceServiceService Complete CAV functionalityFunctional incrementsFunctionFunctionFunctionFunctionFunction SG1 SG2FunctionFunctionFunction FunctionECUMany-to-many relationchipMany-to-many relationchip Many-to-many relationchipECU ECUFSCTSCSystem dev. TSCHW/SW arch.HW/SW dev.HW/SW integr.System verif.System dev. FSC System validationV-dev. cycleAssure each increment according to safety standards Functional increment including properties and changes at all levelsMany-to-many relationchip Safety GoalLegend Safety functionality and property in a safety functionRelationship to a dependent functionality and property at the same abstraction levelRelationship to a dependent functionality and property at a lower abstraction levelFunction FunctionSub-func Sub-funcSub-funcDerivedSW componentSW componentSW component Deriving safety properties from SGError propagation path affecting SGChange/addition of functionality at
• Any level of abstraction
• Any architectural layer of the system or sub-system HW component

Mastering complexityHow to master the complexity 34

Mastering complexity – Introduction of Contract-based designSub-func.ServiceComplex device(s)Execution Platform layerHW layerECU hierarchical architectureApplication layer Sub-func.Sub-func.ServiceServiceService FunctionFunctionFunctionFunctionFunction SG1 SG2ECU ECU ECUFSCTSC Component Contract Contract Contract Contract ContractComponent Component Component ComponentItem ContractContract Contract Contract
• Separation of safety concerns and modularization

• Component-based design
• Hierarchy of components → highest Item level to atomic level

• Safety properties and functionality assured by Safety contracts
• Component safety property and functional response guaranteed by Safety contract
• Contracts specified for each component at all abstraction levels
• Higher level contract assured by fulfillment of lower-level contracts

• Safety contracts
• Methodology focusing on separation of concerns
• Assuring safety properties and behavior of each component
• Expressed by formal requirement syntax
• Enables automatic contract checking
• Safety contracts part of architecture model at all design levels by e.g. SysML/UML, EAST-ADL,..
• Safety case compilation based on safety contracts by SW tool support integrated in CI/CD build chainIntroduction of safety contract-based design

56

• Component Assume-Guarantee (A/G) Contracts
• Contracts are defined as Assume‐Guarantee assertion pairs
• Guarantee are the guaranteed functionality that the specific component is able to fulfill.
• Assume are interpreted as a set of assumptions on the signals provided at their input-ports and the operational environment required for the component functionality.
• Component response and properties are guaranteed under a set of assumptions on the environment, e.g. inputs and dependencies
• Top‐down & bottom‐up

o Global properties of systems are composed based on local properties of the components
o Local properties of components are decomposed based on properties at a higher abstraction levelComponentComponent ContractAssume GuaranteeIntroduction of safety contract-based design

Types of Contracts Sub-Component 1 Sub-Component 3Sub-Component 2A1.1 G1.3

Higher-level Component 1A1 G1

DecomposedHorizontal Contracts
• Component Contracts and Component Interface Contracts defined at the same abstraction level.

A1 G1

A1.2

A1.3

G1.1

G1.2

Component Contract CC1CC1.1 CC1.3CIC1.1CC1.2 Higher-level Component 2A2 G2

Component Contract CC2
Horizontal
contracts

Vertical
contracts

Vertical ContractCC1.1 & CC1.2 & CC1.3 & CIC1.1 satisfies CC1Component Interface Contract CIC1-2Component Contract
• Pair of assertions of assumptions and guarantees of a specific componentComponent‐Component Interface Contract
• Relationship between assumptions of a specific component and guarantees of the interfacing components.
• The guarantees of a component output-port must satisfy the assumptions of the signal input-port of the receiving component(s). Sub-Component 1 Sub-Component 3Sub-Component 2A1.1 G1.3

A1 G1

A1.2

A1.3

G1.1

G1.2

CC1.1 CC1.3CIC1.1CC1.2 Vertical ContractCC1.1 & CC1.2 & CC1.3 & CIC1.1 satisfies CC1Vertical Contracts
• Decomposition of a higher-level component contract to a set of sub-component contracts and component interface contracts
• Sub-component contracts satisfies the higher-level component. G1 A2

78

Formal checking of contracts Sub-Component 1 Sub-Component 3Sub-Component 2A1.1 G1.3

Higher-level Component 1A1 G1

Decomposed

A1 G1

A1.2

A1.3

G1.1

G1.2

CC1CC1.1 CC1.3CIC1.1CC1.2 Higher-level Component 2A2 G2

CC2Vertical ContractCIC1-2• Contracts are specified by a defined requirement syntax implementing a set of logic expressions• Contracts are specified by a defined requirement syntax implementing a set of logic expressions Verifying the Verifying the Guarantee as part of V & VSpecify the Assume and Specify the Assume and Guarantee as part of functional architecture design Formal Contract verification Formal Contract verification of Assume & GuaranteeFormal verification of the Formal verification of the Vertical Contract
• Derived components fulfilling the Guarantee
• Satisfy the global properties of the higher-level component• Component contracts are verified that the guarantee is realized and satisfies the assumption• Component contracts are verified that the guarantee is realized and satisfies the assumption• Result of verification activities feedback into the contract model• Result of verification activities feedback into the contract model

• Formal verification:
• Checking the formal assertions and verification result of assume and guarantee
• Pass: Behavior and properties of assume and guarantee meets the criteria
• Fail: Behavior and properties of assume and guarantee don’t meet the criteria
• Supports impact and variability analysis• Formal verification:
• Checking the formal assertions and verification result of assume and guarantee
• Pass: Behavior and properties of assume and guarantee meets the criteria
• Fail: Behavior and properties of assume and guarantee don’t meet the criteria
• Supports impact and variability analysis

ModellingFitting components & contracts together
• Meta-models910

Technical ComponentFunction(Function Block) Failure modeSafety mechanism Process measure• Functional behavior
• Functional propertySafety contract model - Simplified OutPortIn Port Function responseProvides Type ofType ofSafety measureAllocateFunctionFunction FunctionRealizesDecomposed Mitigation ViolatesTechnical solutionInput stimuli ReceivesRequested stimuliType ofType of Horizontal Safety contractAssume Guarantee Dev. process Verification & ValidationDesign patternVertical ContractExpression of

• Safety properties
• Fault & Error propagation affecting safety properties
• Safety mechanisms
• The Guarantee

• Decomposed properties corresponds with higher-level contract
• Detection & Prevention of error propagation

• The Assume
• Decomposed input signals corresponds with higher-level contract

• Process measures
• Validation & Verification, e.g. test cases
• Evidence of Validation & Verification result Horizontal ContractExpression of

• Safety properties
• Functional behaviour
• Function response
• Safety relevant failure mode
• The Guarantee

• Function response is within safety limits
• Response if error is present
• Probability of failure mode

• The assume
• Input signals
• Operational environment

• Process measures
• Validation & Verification, e.g. test cases
• Evidence of Validation & Verification resultSpecifies SpecifiesPart ofFault stimuliVertical Safety contract

Safety case model Change in a system component corresponds with a safety case incrementChange in a system component corresponds with a safety case increment1112

Safety case modelSaCaModule BSaCaModule D SaCaModule CSaCaModule ESaCaModule A SaCaModule GSaCaModule FSaCaModule B SaCaModule CSaCaModule ASaCaModule DSaCaModule B SaCaModule CSaCaModule ASafety case domainSC Contract SC ContractSC ContractSC Contract SC Contract SC Contract System domainSub-system ASub-system C Sub-system BSub-system DSub-system E Sys contractSys contractSys contract Sys contract
• Safety cases are modular
• Each component has a set of safety contracts
• Safety verification can be limited to the incremental change and its impact on the complete system• Safety cases are modular
• Each component has a set of safety contracts
• Safety verification can be limited to the incremental change and its impact on the complete system

• Component‐based design to enable separation of concerns, re-use of components and usage of safety contracts
• Safety contracts to assure safety functionality and properties of safety relevant components
• Verification measures and results are part of safety contracts
• Formal methods for automatic consistency check of safety contracts
• Defined safety case argumentation structure and verification criteria for safety case compilation
• Automated analysis integrated in the CI/CD tool chain

• Variability analysis
• Error propagation analysis
• Impact and deviation analysisEnablers for Continuous Integration & Continuous Deployment of safety cases

1314

• Contracts for system design (A Benveniste, INRIA 2012)
• Assurance aware contract-based design for safety-critical systems (I Sljivo, 2018)
• AMASS research project - Baseline and requirements for architecture-driven assurance (AMASS_D3.1_WP3_FBK_V1. 1, 2018)
• AMASS research project - Design of the AMASS tools and methods for architecture driven assurance (AMASS_D3.3_WP3_INT_V1.0, 2018)
• Continuous Deployment for Dependable Systems with Continuous Assurance Cases (F. Warg, et al., 2019)References

EndThank you Anders CasselAnders.cassel@qamcom.seQamcom Research & Technology1516

22

	Introduction
	Participant Profiles and State of Practice
	Challenges with Continuous Deployment
	World café on ''Challenges with CI/CD''
	Live Poll on Challenges

	Safety Contracts as Potential Solution
	World café on ''Safety Contracts as Potential Solution''
	Live Poll on Safety Contracts

	Open Discussion
	Conclusion
	References

