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Abstract—Artificial Intelligence (AI) techniques through
Learning-Enabled Components (LEC) are widely employed in
Automated Driving Systems (ADS) to support operation percep-
tion and other driving tasks relating to planning and control.
Therefore, the risk management plays a critical role in assuring
the operational safety of ADS. However, the probabilistic and
nondeterministic nature of LEC challenges the safety analysis.
Especially, the impacts of their functional faults and incompatible
external conditions are often difficult to identify. To address this
issue, this article presents a simulation-aided approach as follows:
1) A simulation-aided operational data generation service with
the operational parameters extracted from the corresponding
system models and specifications; 2) A Fault Injection (FI) service
aimed at high-dimensional sensor data to evaluate the robustness
and residual risks of LEC. 3) A Variational Bayesian (VB) method
for encoding the collected operational data and supporting an
effective estimation of the likelihood of operational conditions.
As a case study, the paper presents the results of one experiment,
where the behaviour of an Autonomous Emergency Braking
(AEB) system is simulated under various weather conditions
based on the CARLA driving simulator. A set of fault types of
cameras, including solid occlusion, water drop, salt and pepper,
are modelled and injected into the perception module of the
AEB system in different weather conditions. The results indicate
that our framework enables to identify the critical faults under
various operational conditions. To approximate the critical faults
in undefined weather, we also propose Variational Autoencoder
(VAE) to encode the pixel-level data and estimate the likelihood.

Index Terms—Automated Driving System, Learning-Enabled
Components, Safety Engineering, Data Analysis, Fault Injection

I. INTRODUCTION

With the advance of Artificial Intelligence (AI) technolo-
gies, Learning-Enabled Components (LEC) [1] are widely
used in Automated Driving Systems (ADSs) and other in-
telligent systems for operation perception, task planning and
control. The behaviours of these LEC rely heavily not only
on the training data but also on the actual operational data
and technical conditions. In general, there are two key issues
of concern [2]: 1) aleatory uncertainties, which are due to

* Corresponding author.

the existence of a priori unknown environmental conditions,
making it impossible to collect the data covering all driving
scenarios; 2) epistemological uncertainties, which are due to
the inherently probabilistic nature of LEC, making it impossi-
ble to identify all possible system fault behaviours and analyze
their impacts preconceived during system development. In
particular, the epistemological uncertainties are related to the
specific design or model underlying LEC-based perception and
control decision-making. Current industrial standards (e.g.,
ISO 26262 [3] and ISO 21448 [4]) demand systematic hazard
identification/analysis and risk assessment [5] to mitigate the
residual risks. However, for LEC, the effectiveness is restricted
due to the insufficiency of conventional expert knowledge as
well as the complexity of faults and operation assumptions
[5], [6]. To cope with such challenges, in this work, we
propose a simulation-aided approach to support these frame-
works by exploring and evaluating the system’s behaviours
with simulation-aided data generation and fault injection. The
contribution of this work is summarized as follows:

• A simulation-aided operational data generation service
with the operational parameters extracted from the corre-
sponding system models and specifications;

• A Fault Injection (FI) service aimed at high-dimensional
sensor data to evaluate the robustness and residual risks
of underlying LEC;

• A Variational Bayesian (VB) method for encoding the
collected operational data and supporting an effective
estimation of the likelihood of operational conditions.

The rest of this paper is organized as follows: Section
II presents the related work on simulation-aided fault injec-
tion. Section III describes the design of the framework to
support hazard identification and risk assessment. Section IV
introduces a case study by injecting faults in Autonomous
Emergency Braking (AEB) system with various operational
conditions in terms of weather parameters. We also present the
hazardous faults of the AEB system. A discussion of future
work is described in Section V.
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II. RELATED WORK

Safety engineering for ADS involves a wide range of
concerns across ADS life-cycle, including system use cases,
requirements, estimated faults and failures and their impacts on
the intended system functionalities under different operational
conditions [6]. The safety analysis of a proposed design [3]
is focused on the identification of potential hazards and the
assessment of corresponding risks. To justify the sufficiency
of a system design or a safety measure, counterexamples in
terms of specific operational scenarios and conditions where
some intended system requirements are violated with potential
hazardous situations, become useful. To support this, FI is an
experiment-based technique widely adopted. The purpose is to
reveal the actual system behaviours in the presence of faults
and thereby support the safety analysis with counterexamples.
The overall process is centred on the definition or selection
of faults that likely occur in the system, the injection of
such faults into the target system and observing how the
system responds under different system work conditions. FI
approaches can differ according to the availability of targets. A
simulation-based fault injection is useful for the safety analysis
and the design of safety mechanisms due to its low cost
and high efficiency by employing virtual operation centring
on system models (e.g., the configuration of the simulated
scenarios and vehicle functionalities). The risks in regard
to intended system requirements could be revealed directly
according to the simulated behaviours [6]. Nevertheless, in
engineering practices, the configuration and execution of FI
are still challenging tasks, relating to the configurations of
system faults and workloads, as well as the optimization
of test execution, data collection and result analysis. Many
approaches [7]–[9] consider multiple fault types (e.g. bit flip,
stuck-at, and Gaussian noise) for FI, but fail to consider the
likelihood of occurrence of these faults in different operational
situations. For example, specific bit-flips could be very likely
to occur in a specific system [8]. For the design of LEC, it is
also common to inject pixel-level faults in the sensory data to
evaluate the algorithmic performance [10]–[13]. On the other
hand, the support for the integration of such analysis with
fault modeling and hazard analysis is often not provided. For
the optimization of FI test cases, optimization-based methods
have been proposed to guide the configurations [14], [15] but
experience scalability challenges due to the existence of a wide
range of operational scenarios. In this work, we present an
approach to safety analysis of LEC using simulated operational
data by FI cases that are configured systematically according
to the corresponding system models. It facilitates the work of
revealing the safety critical operational conditions and faults
under various operational conditions.

III. METHODOLOGY

The overall structure of our approach to a simulation-aided
safety analysis for LEC based on FI is illustrated in Figure 1.
It consists of three major services: I. Simulated Data Genera-
tion; II. Fault Injection; and III. Hazard Identification and Risk
Evaluation. We present the simulated data generation service

Fig. 1: Overall structure of the proposed approach.

in Section III-A. The design of service for fault injection is
described in Section III-B. In Section III-C, we introduce the
support for an automated data-driven safety assessment using
an auto-encoder (AE).

A. Data Generation Service based on System Parameters

The system models specify the target ADS and its oper-
ational environments, supported by the domain-specific lan-
guage EAST-ADL [16]. An additional scenario description
method is used to capture the related operational conditions
for the configuration of simulations [17]. The configuration
of each FI experiment is given by a set of parameters for the
internal and external conditions. However, the configuration of
such FI parameters typically relies on sampling-based meth-
ods that assess the distribution of generated simulation data,
challenging the validity and effectiveness of FI experiments.
For example, FI experiments could cover specific scenarios
where ADS and traffic participants keep large distances, ex-
ceeding the operational range of the ADS camera. Under this
circumstance, the generated operational data may fail to reveal
the actual behaviours of object detection. To cope with this
issue, we propose the workflow shown in Block I of Fig. 1
where a more comprehensive set of parameters for stipulating
various simulation cases (referred to as P), relating to both
ADS functional manoeuvres and ADS external conditions (e.g.
traffic participants, weather parameters, and road conditions).
These parameters collectively define the driving functionalities
according to the system models. Next, we transform the critical
parameters which determine such behaviors of the ADS to the
parameter sets for the simulations of ADS operation. More
precisely, the assessment of ADS behaviors with the scenario
of P and ADS system M is given by the assertion Φ in regard
to some system requirements ψ:

Φ(P,M) |= ψ (1)
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Fig. 2: Validation regions shown by the collected data and the simulated data according to different parameter specifications.

TABLE I: Configurations (P,M and ψ) for generating con-
crete scenarios.

Parameter Name Scenario Parameter

ADS

Interested
Functionaility

AEBS
Relative Distance

Estimation

Initial State vr, ar = β,
location = (x,y)

Leading
Vehicle Initial State

vl < vr, al = 0
location = (x,y+d0r),
d0r = [dmax

safe, d
min
safe]

Road Ontology High way \

Fault Type
Salt and Pepper Intensity = 80%

Radnom LocationSolid Occulsion
Water Drop

Weather
Fog

Fog = True or False
Fog Fallout = (0-100)
Fog Density = (0-100)

Sun Sun Angle = (0-100, 0-100)
Cloudiness = (0-100)

B. Fault Injection Service based on Simulated Data

A hazard is a system failure that represents a potential
source of harm. Such a failure, in combination with specific
environmental conditions, could cause violations of system
requirements in terms of unacceptable safety risks [18]. To
identify and analyze potential hazards as well as related faulty
behaviours of LEC, it is critical to investigate the possible
faulty and operational conditions systematically.

A workflow for FI is presented in Block II of Fig. 1. To
inject faults into different modules of ADS, we specify the
faults f according to the models of the target ADS system
M. We parameterize the faults by their location l, type t,
and intensity i of occurrence. The FI process is referred to as
fM(l, t, i). The results of fM are dependent on the operational
conditions parameterized by P. For example, M could be
represented by LEC for object detection. Faults are injected
into the pixel-level input data d of this LEC with multiple
fault types t, through the l-th pixels with an intensity i. The
behaviours of M given by the corrupted data dc are evaluated
in regard to the requirements ψ for assessing the risks. A
hazardous fault fM(l, t, i) is revealed when Φ(P,M) ⊭ ψ.

C. Encoding Operational Conditions

The basic FI service mentioned above constitutes the basis
for safety analysis. However, for high-dimensional operational
data in sensory systems, the interpretation of FI results can
be challenging. To this end, we use Variational Auto-Encoder
(VAE) [19]–[22], which is a generative model combining auto-
encoder (AE) and probabilistic models, to process the FI data,
while leveraging the VAE latent space presentation for treating
the high-dimensional inputs. This encoding process can be
represented as follows:

pφ(zi) =
∫

d
pφ(zi|di

k)pφ(d
i
k)d(d) (2)

where d(d) =
∏

i d(d
i
k), di

k refers to the simulated data at
timestamp k in the operational conditions i ∈ {1, 2, 3, . . . , n},
which is generated by parameters Pi in the FI services. φ is the
parameters of the encoder networks, which extract the features
of high dimensional di to a low dimensional distribution of
zi.

To optimize the performance of the encoder network under
various simulated data, d̂

i

k is the recovered data from zi by
using decoder networks with parameters θ as Eq. 2. This
network tries to reconstruct the input data by sampling zi from
latent states, which can regularize to Gaussian Distribution
with reparameterization tricks as follows [21], [23]:

zi ∼ pφ(zi|di
k) = N (µi,σ2

i ). (3)

Eq. 4 refers to the decoding process of the VAE. In Eq. 4,
d(z) =

∏
i d(z

i). Such an encoding-decoding structure sup-
ports a straightforward way for inferring latent states, avoiding
the over-fitting and model collapse of neural networks. We use
Kullback–Leibler (KL) divergence to guide the training of the
VAE by measuring the loss between d̂

i

k and di
k.

qθ(d̂
i

k) =

∫
z
qθ(d̂

i

k|zi)qθ(zi)d(z) (4)

Since the latent space {z1, z2, . . . , zn} represents the dis-
tribution clusters of n operational conditions, they reveal
different operational conditions by specific parameters of

3



Postprint – To appear in 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023)
– Workshop on Beyond Traditional Sensing for Intelligent Transportation –

TABLE II: Fault injection results under different scenarios.

Water Drop Salt and Pepper Solid Occlusion
False-trigger Omit-trigger False-trigger Omit-trigger False-trigger Omit-trigger

Sunny 5.6% 3.2% 16.2% 12.1% 60.1% 48.4%
Night 79.2% 18.4% 65.5% 23.4% 74.2% 56.3%
Foggy 21.4% 14.7% 61.2% 45.0% 77.9% 38.1%
Dawn 55.5% 10.3% 35.2% 24.6% 80.5% 61.4%

means µ and standard deviations σ. Therefore, we evaluate
the likelihood of input data du

k with undefined operational
conditions by comparing their zu with the already collected
z{1,2,...,n}. Based on the generative results from the VAE, we
can further assess the likelihood which indicates the similarity
between the undefined condition and the already collected
conditions.

IV. CASE STUDY

A. Simulated Data Generation

We use Autonomous Emergency Braking (AEB) System
as a case study to verify our framework. The sensory data
from the camera are processed by LEC to detect objects and
estimate relative distances. Next, the results from LEC support
preventing a collision by initializing the brake. The simulation
verifies the performance by initializing with a range of relative
distance and velocity. To efficiently simulate this scenario, we
generate appropriate parameters by modifying Responsibility-
Sensitive Safety (RSS) [24]–[26] for the formal specification
ψ. In particular, we use the same assumption as in [27], [28]
where the AEB system relies on partial brake βpartial and full
brake βfull to maintain a safe distance. The minimum safety
distances under these brake modes are presented as follows:

dsafe = vrρ+
βρ2

2
; ψ ::= □ dmax

safe ≤ dr (5)

where β ∈ {βpartial, βfull, 0}; vr refers to the relative
velocity captured by the radar; dr refers to the relative distance
which a LEC estimates from image; ρ refers to the response
time of the AEB system. In Fig. 2 (a), all the nodes refer to the
possible relative distance and velocity by using the Uniform

Fig. 3: Characterization of ADS operation by latent space
clustering using t-SNE (t-distributed Stochastic Neighbor Em-
bedding)

Sampling. Such a state space needs to generate a large amount
parameter sets, leading to inefficiency of the simulation. Rely-
ing on the formal specification defined in Eq. 5, we conclude
that a collision is inevitable when dr is less than the safe
distance with full brake dmax

safe. This unsafe area is represented
by the blue nodes in Fig. 2 (a). On the other hand, the red
nodes refer to safe states that the relative distance is larger
than the distance with minimum brake dmin

safe. In this case, the
minimum brake refers to the partial brake βpartial. However,
the region in Fig. 2 (a) between the dmin

safe and dmax
safe should

be verified in the simulation by evaluating the performance
of LEC. Especially, when these critical parameters are in this
region, the AEB system is initialized with false-trigger if the
detected distance is smaller than the safety distance in Eq. 5,
leading to the ADS braking in advance. Otherwise, the AEB
system is initialized with omit-trigger, causing a violation of
the specification. Compared with false-trigger, it is obvious
that the omit-trigger is a more hazardous event. In this case,
it is critical to assure the safety of the ADS by addressing the
faults and operational conditions leading to omit-trigger.

Fig. 4: An example of Corrupted Data after FI services

We use CARLA [29] as a simulator to generate data
according to the parameters listed in Table I. We implement
the functionality M as target functionalities for detecting
the relative distance dr. A YOLO network is used in the
perception module by analyzing images d captured by the
camera [30], [31]. This neural network shows robustness under
different driving section (e.g., urban road and high way) by
the KITTI training dataset [32]. However, the weather is a
critical element regarding the image resolution. Therefore,
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we investigate different operational conditions according to
a variety of weather parameters (shown in Table I), including:
sunny, foggy, dawn, and night (Fig. 2 (b)). For the relative
distance estimation, the perception module shows acceptable
performance in these weather conditions. We select then water
drop, solid occlusion, salt and pepper (Fig. 4), which also
are used in [11], [12], as fault types t to corrupt the images
d. These faults are injected into around 500 images under
each weather condition with i = 80% and random pixels.
In Table II, we summarize the consequences of such faults
with the following observations: 1) Solid occlusion is highly
hazardous in all weathers, with the dawn scenario as the worst
case where this fault leads to 61.4% of the omit-trigger. 2)
Salt and pepper is highly hazardous in foggy, where 45.0% of
this fault could lead to omit-trigger. 3) Water drop is sensitive
during the night scenario, where 79.2% of this fault leads to
the false-trigger. In additional, the faults are most significant to
dawn and night, indicating that the YOLO network is sensitive
to the brightness of the environment. This conclusion is also
found in [10], [13].

The results indicate that even for the same faults, there
are different effects in these weather conditions. Therefore,
we use VAE to encode the operational conditions under these
weathers and identify the latent states, supporting classifying
the hazards and evaluating the risks under undefined weathers.
In Fig. 3, the latent states of d are clustered by the t-SNE
algorithm [33]. The latent states of dawn and night show
similar features. Simulated data in Sunny cluster to a centring
area, indicating unique features compared with other weather
conditions. These facts indicates that the VAE could support
revealing the likelihoods of different operational conditions.
To verify this, we generate the simulated data du by a random
weather parameter set shown as Fig. 5(a). We use the same
method in [34] to evaluate this likelihood by computing the
similarity of zu and z{1,...,4}, referring to the latent states with
the predefined weathers in Fig. 2 (b). The results in Fig. 5(b)
indicate that the simulated environment is more similar to the
sunny, implying the solid occlusion is the most hazardous
faults in this undefined weather. Meanwhile, the undefined
conditions still has a certain similarity of foggy (around 20%).
This means that a prevention of false-trigger from salt and
pepper is of particular concern during the operation.

V. DISCUSSION AND FUTURE WORK

For safety analysis of ADS, our approach can effectively
select the critical parameters relating to the vehicle maneuvers
and external traffic conditions, generate the operational data
by simulation, and estimate the likelihood of violating system
requirements by VB method. In future work, a Scenario
Description Language (SDL) (e.g., [35], [36]) can be used to
generate the external parameters and describe more complex
operational scenarios. We would combine these parameters
with formal methods or declarative programming. The logical
solvers support generating the related parameters of the func-
tionalities automatically. Furthermore, a systematical architec-
ture could be the future work to specify the definition of the

Fig. 5: Likelihood Estimation of the Unknown Weather

parameters. For real-life applications, the discrepancy caused
by the gap between simulated and real-world data needs to be
considered.

We inject random pixel-level faults to evaluate the behaviors
of LEC. To further investigate the hazards in the ADS,
especially the LEC, fault injection based on hardware level
(e.g., autonomous embedded system) could be the next topic.
The optimization-based method can be used in future work to
improve the efficiency of fault injection. Next step, we prepare
to combine the fault injection with adversarial learning to find
the critical pixels in the input image.

VAE is used to encode the pixel-level data in the predefined
weathers, supporting to compute the likelihood of an undefined
operational condition. However, this method still shows some
limitations: For example, some clusters of foggy are outliers
in Fig. 3, indicating that the VAE misinterprets the latent
states. This phenomenon can be improved by generating
more training data or improving the resolution of the related
parameters. Future work could investigate other generative
models (e.g., Generative Adversarial Networks) to improve
the performance for encoding the operational parameters.
Moreover, one critical work in the future is the interpretation
of latent states by mapping the latent space to the human-
understandable parameters. The latent space of the multi-
sensor such as sensor-fusion by using deep neural networks
could be a future topic for assuring the safety of ADS.

Our framework can also be extend to support Predictive
Health Monitors (PHM) in future by including the diagnosis
and prognosis services. We need to investigate the correlation
and causation between the target and the related functionalities
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by considering the Fault Tree Analysis (FTA). Combining the
PHM with safe and hazardous states in the latent space, a
self-evolving monitors could be used for mitigating hazards.
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